Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.11.455960

ABSTRACT

SARS-CoV-2 proximal origin is still unclear, limiting the possibility of foreseeing other spillover events with pandemic potential. Here we propose an evolutionary model based on the thorough dissection of SARS-CoV-2 and RaTG13 - the closest bat relative - spike dynamics, kinetics and binding to ACE2. Our results indicate that both spikes share nearly identical, high affinities for Rhinolophus affinis bat and human ACE2, pointing out to negligible species barriers directly related to receptor binding. Also, SARS-CoV-2 spike shows a higher degree of dynamics and kinetics optimization that favors ACE2 engagement. Therefore, we devise an affinity-independent evolutionary process that likely took place in R. affinis bats and limits the eventual involvement of other animal species in initiating the pandemic to the role of vector.


Subject(s)
Severe Acute Respiratory Syndrome
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.05.21260035

ABSTRACT

To control future epidemics, discovery platforms are urgently needed, for the rapid development of diagnostic assays. Molecular diagnostic tests for COVID-19 emerged shortly after the isolation of SARS-CoV-2, however, serological tests based on antiviral antibody detection, revealing previous exposure to the virus, required longer developmental phases, due to the need for correctly folded and glycosylated antigens. The delay between the identification of a new virus and the development of reliable serodiagnostic tools limits our readiness for the control of a future epidemic. In this context, we propose the protozoan Leishmania tarentolae as an easy-to-handle micro-factory for the rapid production of viral antigens, to be used at the forefront of emerging epidemics. As a study model, we engineered L. tarentolae to express the SARS-CoV-2 Receptor Binding Domain (RBD) and report the ability of the purified RBD antigen to detect SARS-CoV-2 infection, with a sensitivity and reproducibility comparable to that of a reference antigen produced in human cells. This is the first application of an antigen produced in L. tarentolae for the serodiagnosis of a Coronaviridae infection. Based on our results, we propose L. tarentolae as an effective system for viral antigen production, even in countries that lack high-tech cell factories.


Subject(s)
COVID-19 , Coronaviridae Infections
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.30.20164368

ABSTRACT

BackgroundCoronavirus disease-19 (COVID-19) is a respiratory illness caused by the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), a novel beta-coronavirus. Although antibody response to SARS-CoV-2 can be detected early during the infection, several outstanding questions remain to be addressed regarding magnitude and persistence of antibody titer against different viral proteins and their correlation with the strength of the immune response, as measured by serum levels of pro-inflammatory mediators. MethodsAn ELISA assay has been developed by expressing and purifying the recombinant SARS-CoV-2 Spike Receptor Binding Domain (RBD), Soluble Ectodomain (Spike), and full length nucleocapsid protein (N protein). Sera from healthcare workers affected by non-severe COVID-19 were longitudinally collected over four weeks, and compared to sera from patients hospitalized in Intensive Care Units (ICU) and SARS-CoV-2-negative subjects for the presence of IgM, IgG and IgA antibodies as well as soluble pro-inflammatory mediators in the sera. ResultsSpecificity and sensitivity of the ELISA assays were high for anti-RBD IgG and IgA (92-97%) and slightly lower for IgM and the Spike and N proteins (70-85%). The ELISA allowed quantification of IgM, IgG and IgA antibody responses against all the viral antigens tested and showed a correlation between magnitude of the antibody response and disease severity. Non-hospitalized subjects showed lower antibody titers and blood pro-inflammatory cytokine profiles as compared to patients in Intensive Care Units (ICU), irrespective of the antibodies tested. Noteworthy, in non-severe COVID-19 infections, antibody titers against RBD and Spike, but not against the N protein, as well as pro-inflammatory cytokines decreased within a month after viral clearance. ConclusionsRapid decline in antibody titers and in pro-inflammatory cytokines may be a common feature of non-severe SARS-CoV-2 infection, suggesting that antibody-mediated protection against re-infection with SARS-CoV-2 is of short duration. These results suggest caution in use serological testing to estimate the prevalence of SARS-CoV-2 infection in the general population.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.20.212654

ABSTRACT

Hepatocyte Growth Factor/Scatter Factor (HGF/SF) and its cognate receptor MET play several essential roles in embryogenesis and regeneration in post-natal life of epithelial organs such as liver, kidney, lung, and pancreas, prompting a strong interest in harnessing HGF/SF-MET signalling for regeneration of epithelial organs after acute or chronic damage. The limited stability and tissue diffusion of native HGF/SF, however, which reflect the tightly controlled, local mechanism of action of the morphogen, have led to a major search for HGF/SF mimics for therapy. In this work, we describe the rational design, production and characterisation of K1K1, a novel minimal MET agonist consisting of two copies of the kringle 1 domain of HGF/SF placed in tandem. K1K1 is highly stable and displays biological activities equivalent or superior to native HGF/SF in a variety of in vitro assay systems and in a mouse model of liver disease. These data suggest that this engineered ligand may find wide applications in acute and chronic diseases of the liver and other epithelial organs dependent on MET activation.


Subject(s)
Liver Diseases
SELECTION OF CITATIONS
SEARCH DETAIL